FINAL EXAM FOR MTH102 SPRING007

THE 102 TEAM : AYMAN, MARWAN, LEDUC, LUIS, TOM, YUSUF, ZAYID

Name \quad, Id. Num. \longrightarrow, Score $\overline{100}$
QUESTION 1. (20 points, each $=5$ points)
SHOW WORK TO RECEIVE FULL CREDIT BUT DO NOT SIMPLIFY YOUR ANSWER
(1) Find each of the following:
(a) $f(x)=\left(\ln \left(x^{3}-2 x+1\right)\right)^{8}$ $f^{\prime}(x)=$
(b) $f(x)=\frac{e^{x^{2}}}{x+e^{x}}$ $f^{\prime}(x)=$
(c) $f(x, y)=x e^{y}+y e^{x}$ $f_{x}(x, y)=$
$f_{x y}(x, y)=$
(d) $f(x)=10^{2 x} \ln \left(x+x^{-2}\right)$

$$
f^{\prime}(x)=
$$

QUESTION 2. (18 points, each $=6$ points)
(1) $\int_{1}^{2} \frac{\mathrm{x}^{3} \mathrm{e}^{-\mathrm{x}}-3+\mathrm{x}^{2}}{\mathrm{x}^{3}} \mathrm{dx}=$
(2) $\int \mathrm{x}\left(\mathrm{x}^{2}-9\right)^{4} \mathrm{dx}=$
(3) $\int \frac{\mathrm{x}^{2}-10 \mathrm{x}+7}{\left(\mathrm{x}^{3}-15 \mathrm{x}^{2}+21 \mathrm{x}+8\right)} \mathrm{dx}=$

QUESTION 3. (10 points) (4) The marginal average cost for producing x fuelcell cars is given by
$-\frac{2,000,000}{x^{2}}$ and the average cost of producing 1000 vehicles is $\$ 27,000$ per vehicle. Find the marginal cost $C^{\prime}(x)$ and evaluate it for a production of 2000 vehicles.
(Hint: As a first step, Find the AVERAGE COST)

QUESTION 4. (10 points) Find Local Min. and Local max., if any, for $f(x)=$ $-x^{3}+6 x^{2}-9 x$.

QUESTION 5. (12 points) Let x be the number of units from product A, and y be the number of units from product B. Given the total profit function $P(x, y)=x y+x^{2}+y^{2}-90 x-60 y+100$. For what values of x and y will the profit be maximum? What is the maximum profit?

QUESTION 6. (10 points) Sketch the graph of $f(x)$ that satisfy the following conditions:

1) $f(-2)=1, f(0)=0, f(2)=1$.
2) $f^{\prime}(0)=0, f^{\prime}(x)<0 \quad$ on the interval $(-\infty, 0), f^{\prime}(x)>0$ on the interval $(0, \infty)$
3) $f^{\prime \prime}(-2)=0, f^{\prime \prime}(2)=0$.
4) $f^{\prime \prime}(x)>0$ on the interval $(-2,2)$ and $f^{\prime \prime}(x)<0$ on the interval $(-\infty,-2) \cup(2, \infty)$
5) $\lim _{x \rightarrow-\infty} f(x)=\operatorname{Lim}_{x \rightarrow \infty} f(x)=2$

QUESTION 7. (5 points) a) Find all the horizontal and vertical asymptotes of $\frac{x^{2}+x-6}{2 x^{2}-18}$.
(8 points) b) Find the equation of the tangent line to the curve $x^{2}-y=4 e^{y}$ at the point $(2,0)$
(7 points) c)Let x be the number of units from product A, and p be the selling price per unit. If $x=f(p)=\frac{50}{p}-p+15$.
a) Find the elasticity at $p=5$.
b) If the 5 dollars price changes by 20%, use part (a) to approximate the change in demand.

Department of Mathematics \& Statistics, American University Of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates

